Knowledge for a sustainable world

Bsc, PhD

Dr Goncalo Silva completed his Biotechnological Engineering degree at the University of Algarve, Faro, Portugal in 2004. Dr Silva has initiated his career in scientific research in 2005 at the University of Algarve, Portugal, working as a Research Assistant on a project about the Evolution and Molecular Epidemiology of Citrus tristeza virus (a plant virus). In January 2008, he was granted a scholarship by Fundação para a Ciência e a Tecnologia (Portugal) to carry out his PhD research at the Plant Molecular Virology Group of BioFig, University of Algarve. During 4 years, Dr Silva proceeded is research on the Phylodynamics of Citrus tristeza virus. In August 2013, Dr Silva joined the Natural Resources Institute, University of Greenwich, as a Research Fellow on a project that aims the development of a low cost on-farm robust diagnostic toolkit for Yam viruses.

Keywords: Molecular Epidemiology, Molecular Biology, Plant Virology, Diagnostic, Yam Viruses

My research focuses on the molecular identification and characterisation (DNA barcoding) of insects and the development of diagnostic tools, both laboratory and field-based, for the rapid and efficient detection of plant viruses.

Areas of interest include virology, molecular diagnostics, epidemiology, plant-virus-vector interactions and high throughput sequencing (HTS) technologies to study plant viral populations and virus disease transmission.

Identification of mealybug vectors involved in the transmission of badnavirus infecting yam in Northern Nigeria

(2019-2020, funded by BBSRC Global Challenges Research Fund: “CONNECTED” - Community network for African vector-borne plant diseases award)

Yam productivity is severely compromised by the high impact of yam viruses and their insect vectors. Sap-feeding mealybugs are both direct plant pests and active vectors of badnaviruses, but only little is known about the role they play as vectors of yam badnaviruses. We plan to identify mealybug species infesting yam fields in northern Nigeria and thought to be vectors of Dioscorea bacilliform viruses (DBVs), detect and characterize DBV species in individual mealybugs, and evaluate whether there are potential correlations between certain mealybug- and DBV-species, which could inform vector specificity.

Renewal: Enabling Research Tools for Cassava and Yam Virologists and Breeders

(2016-2021, funded by the Bill and Melinda Gates Foundation)

This project is a continuation of the ‘Development of On-Farm Robust Diagnostic Toolkits for Yam Virus Diseases’ project (ended September 2016). The reinvestment is to optimize the yam virus diagnostic tests developed to date, as well as make further concerted efforts to generate improved antisera for yam potyviruses and badnaviruses to assist both the development of lateral flow devices for field diagnostics, and rapid concentration of virus particles for nucleic acid tests. The reinvestment will focus on the evaluation of the best tests for use in sub-Saharan Africa (SSA), and technology transfer to West African scientists and laboratories. Transfer of the tests will enable W. African National Agricultural Research Systems (NARS) to determine the virus-status of yam breeding lines and certify planting material for distribution to yam smallholders is virus-free.

Building links with the Kent wine industry

(2015–2017, funded by the University of Greenwich)

Grapevine (Vitis vinifera) is a major crop worldwide and produces a valuable agricultural commodity. The UK wine industry is a fast-growing sector and in 2017, an area of c. 2,500 hectares had been planted, a tripling of the area since 2000. Production of wine is projected to increase from the current 6 million bottles of wine per annum to c. 40 million bottles by 2040. This project aims to increase our knowledge about the presence and incidence of viruses in UK vineyards to develop efficient control strategies at this crucial and early stage of vineyard establishment. This project will assist the UK grapevine grower’s network by creating awareness of the presence of economically important viral diseases in UK vineyards and contributing to the sustainability of the UK grapevine industry.

Development of On-Farm Robust Diagnostic Toolkits for Yam Virus Diseases

(2012-2016, funded by The Bill and Melinda Gates Foundation)

Yams are propagated vegetatively through their tubers, which leads to an accumulation of tuber-borne diseases in farmers' planting material and subsequent serious crop yield losses. The economically important tuber-borne diseases are caused by viruses, and the only effective method of controlling these virus diseases is to use virus-free planting material. The scarcity and associated high expense of such material have been identified as some of the most important critical constraints to increasing yam production and productivity in West Africa. The goal of this project is to develop sensitive and specific cost-effective diagnostic tests for the most important African yam viruses and then adapt these tests to be suitable for on-farm virus-indexing. Due to the presence of integrated pararetrovirus sequences (EPRVs) in some yam breeding line genomes, it is also necessary to identify which lines contain activatable EPRV sequences and identify diagnostic procedures for these EPRVs. The diagnostic toolkits and procedures developed will be suitable for use in West African indexing centres and this will lead to the delivery of high-quality virus-free planting material of preferred yam varieties for multiplication and distribution to yam smallholders in West Africa. This will lead to improved food security and income generation for smallholders in West Africa.

Send an Email